Interface Solutions of a Degenerate Cahn - Hilliard Equation

نویسندگان

  • Thomas P. Witelski
  • THOMAS P. WITELSKI
چکیده

We present an analysis of the equilibrium diiusive interfaces in a model for the interaction of layers of pure polymers. The discussion focuses on the important qualitative features of the solutions of the nonlinear singular Cahn-Hilliard equation with degenerate mobility for the Flory-Huggins-de Gennes free energy model. The spatial structure of possible equilibrium phase separated solutions are found. Using phase plane analysis, we obtain heteroclinic and homoclinic degenerate weak compact-support solutions that are relevant to nite domain boundary value problems and localized impurities in innnite layers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Cahn{hilliard Equation with Non{constant Mobility and Its Asymptotic Limit

We present an existence result for the Cahn{Hilliard equation with a concentration dependent mobility which allows the mobility to degenerate. Formal asymptotic results relate the Cahn{Hilliard equation with a degenerate mobility to motion by surface diiusion V = ? S. We state a local existence result for this geometric motion and show that circles are asymptotically stable.

متن کامل

Sharp-Interface Limits of the Cahn-Hilliard Equation with Degenerate Mobility

We consider the sharp interface limit of the degenerate Cahn–Hilliard equation with polynomial free energy via matched asymptotic analysis involving exponentially growing terms and multiple inner layers. With a quadratic mobility, a contribution from nonlinear, porous-medium type bulk diffusion to the normal flux condition for the interface motion appears in the limit model to the same order as...

متن کامل

Di use interface surface tension models in an expanding ow

We consider a di usive interface surface tension model under compressible ow. The equation of interest is the Cahn-Hilliard or Allen-Cahn equation with advection by a non-divergence free velocity eld. We prove that both model problems are well-posed. We are especially interested in the behavior of solutions with respect to droplet breakup phenomena. Numerical simulations of 1,2 and 3D all illus...

متن کامل

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities

We study a non-local variant of a diffuse interface model proposed by Hawkins– Darrud et al. (2012) for tumour growth in the presence of a chemical species acting as nutrient. The system consists of a Cahn–Hilliard equation coupled to a reactiondiffusion equation. For non-degenerate mobilities and smooth potentials, we derive well-posedness results, which are the non-local analogue of those obt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007